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Object recognition based on geometry:
progress over three decades

By Joseph L. Mundy

GE Corporate Research and Development, 1 Research Circle,
Niskayuna, New York, NY 12309, USA

The evolution of object recognition systems over the last three decades has featured
the use of geometric representations. In this paper, progress in object recognition will
be reviewed and significant advances due to our deeper understanding of geometric
relationships will be highlighted. An example of such progress is the development of
projective and affine reconstruction from multiple uncalibrated camera views. This
new understanding of the image projection of object geometry has had considerable
impact on object representation and on grouping algorithms for recognition.
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1. Introduction

The central task for computer vision is to extract a description of the world based on
images. Descriptions derived from images are essential to diverse applications of com-
puters, such as virtual reality and human–machine interfaces. An important element
of a description is the assertion that a specific individual object has been previously
observed or that an object is similar to a set of objects seen in the past. This process
of recognition, literally to RE-cognize, permits an aggregation of experience and the
evolution of relationships between objects based on a series of observations. The abil-
ity to recognize objects in a cluttered scene with complex illumination and shadows
has proven to be one of the most difficult challenges for computer vision. Progress
has been gradual, but with significant advances since visual recognition became part
of research in pattern recognition and artificial intelligence in the 1950s.

A great deal is now understood about the relationship between a geometric struc-
ture in three dimensions and its image projection. The process of constructing geo-
metric descriptions from images has received considerable attention, and many ap-
proaches for indexing and classifying objects, based on geometric attributes, have
been developed and implemented. There has also been progress in modelling the
appearance of objects empirically from a set of training images. This empirical ap-
proach can provide a representation for objects for which a formal description is
not yet known. Advances have also been achieved by integrating contemporary ideas
about recognition into complete recognition systems, which provide benchmarks of
progress.

2. What is recognition?

Not a small part of the difficulty of object recognition by computer is the illusiveness
of the concept of recognition itself. Philosophers and psychologists have struggled to
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(a) (b)

Figure 1. (a) An image has been segmented to form a set of fragmentary line segments. (b)
The segments are seen to represent the partial boundaries of a bicycle, indicated by adding the
wheels and drive sprocket. (Adapted from Lowe (1985).)

define an individual object and how objects are organized into classes. The philo-
sophical state of affairs today is summarized by the following two principles: only
individual objects exist; a class is defined by its individual members, which resemble
each other.

For our purposes, it will be assumed that two objects are the same if a sufficient
number of significant visual attributes are matched. Further, the definition of object
classes is based on visual similarity and that the main purpose of classes is to enable
effective recognition. The definition of what is significant and effective depends on
the application, but is centred on the processes of image segmentation and spatial
organization.

The process of recognition is composed of two parts: perception and classification.
Perception is the process of assembling the features of an object in the image. A
famous example by Lowe (1985) illustrates the perceptual grouping of line segments
to form a bicycle. It is difficult to assemble the features of objects when seen against
a complex background and with only partial extraction of the boundaries, as shown
in figure 1. This process is also known as figure–ground separation.

Classification is the assignment of the set of assembled object features to an indi-
vidual instance or perhaps to a larger class of objects. The problem of classification
is illustrated by figure 2, which shows two examples of the common garden pepper.
Classification has proven difficult for many concepts which are natural for human
perception, such as chair or table. These classes are perhaps better treated by an
analysis of function, as demonstrated by Stark & Bowyer (1991). However, the ex-
traction of functional attributes, such as centre of gravity, from a single perspective
image remains difficult.

These two parts of recognition, perception and classification, are independent since
it is possible to separate an object from the background as an entity without being
able to classify it. For example, consider a coloured bird against snow, or a moving
object where figure–ground separation is achieved by motion differentiation. In many
situations, however, an important role of class for computer-based object recognition
is to define image constraints which can guide the perception process.
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Figure 2. Two examples of peppers taken from the same plant. This amount of variation must
be accepted in an object’s shape while making the same classification for each individual.
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Figure 3. A history of some of the key ideas and paradigms for object recognition by computer.

3. A survey of ideas about recognition

The history of object recognition by computer vision extends back into the 1950s.
The development has involved ideas or concepts which define various frameworks for
carrying out object recognition. A time-line of some of these ideas is shown in figure 3.
The key ideas are a mixture of representations, architectures and algorithms which
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Figure 4. Object classes are defined by proximity in attribute space. Shown are a number of
samples of two different classes. In this case, an object is described by three attributes, or
features, X1, X2 and X3. A distance measure, d(X,Y ) is defined on the space which determines
the proximity of an unknown point to existing class samples.

have motivated extensive research activities. At many stages of this evolution, one
approach or another was optimistically proposed to be a full solution to the problem
of recognition. It now seems likely that no general solution exists. A competent
recognition system will most certainly embody a multitude of representations and
associated algorithms. Still, many important principles have been discovered which
form the basis for designing and implementing recognition systems. These principles
have emerged at various stages over the past 30 years and are often reinterpreted in
terms of new capabilities and insights. This historical review will summarize the key
ideas and their chain of development.

(a) Object attributes as a geometric space

The definition of class membership is proximity in a space of object attributes. If
an object has properties which are similar to another object, then they are in the
same class. In this case, similarity is equivalent to distance in the geometric attribute
space. The concept is depicted in figure 4. The construction of this attribute space
is dependent on the existence of a mapping of the attributes of an object, such as
colour, intensity, texture, onto a set of numerical coordinates. If such a mapping can
be defined, then a particular instance of an object can be represented as a point in the
n-dimensional space of attributes. Object instances which belong to the same class
are then near one another and form clusters. The classification process then becomes
a problem of determining the distance from a point representing an unknown sample
to the nearest cluster.

It is difficult to pinpoint the first use of this object representation and classifica-
tion scheme, commonly known as image pattern recognition. However, certainly by
the 1950s image pattern recognition systems based on n-dimensional feature vector
classification were under widespread development (Chow 1957).
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Figure 5. A three-dimensional structure, such as the human form, can be decomposed into cylin-
drical primitives. The configuration is characterized by the relative positions and orientations
of the axes of symmetry. (After Marr & Nishihara (1978).)
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Figure 6. There are only a small number of possible views of tri-hedral junction. The possible
edge labels are: convex, +; concave, −; and occluded,→. The figure illustrates a subset of the 16
feasible junction configurations, out of 208 possible combinations of edge labels. (After Raphael
(1976).)

(b) Structural decomposition

Another key idea in the evolution of object recognition is the structural represen-
tation and decomposition of an object into primitive components. These components
are then aggregated to form the overall object by a network of relationships among
the components. In many structural representation schemes, these relations are geo-
metric or topological. This idea of structural decomposition was used quite early in
the representation of characters in support of optical character recognition (OCR)
systems.

This approach evolved into a general approach called structural pattern recogni-
tion, or pattern grammars. The evolution reached a culmination in the mid-1970s (Fu
1974; Pavlidis 1977), when a full theory of pattern syntax and parsing was developed.
Structures can be decomposed hierarchically into intermediate symbols and finally
into so-called terminal symbols which are the actual primitives. The purely syntactic
approach waned because many geometric relationships are difficult to express with
simple formal grammars and full expressiveness is gained at the cost of intractable
parsing complexity.
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Figure 7. The labelling process can be extended to curved surfaces.

The idea of hierarchical reduction into primitives has remained an attractive con-
cept because it seems the only way to control the complexity of object descriptions.
The idea was extended to three-dimensional (3D) polyhedral structures by Roberts
(1965) and to curved shapes by Binford (1971), who proposed the use of generalized
cylinders as a generic 3D shape primitive. This idea was promoted also by Marr &
Nishihara (1978) as a general representation of 3D shape. Figure 5 illustrates that
the hierarchical decomposition provides a mechanism for levels of detail. The overall
axis of symmetry summarizes the orientation of the body as a whole, the next level of
detail gives the position and orientation of the symmetry axes of major components.

(c) 3D constraints induce 2D constraints

(i) Edge and junction labelling

A key idea that has motivated many advances in object recognition is that con-
straints inherent in the configuration of an object in 3D space induces 2D image
constraints which can be exploited in all stages of recognition processing. An early
example of this concept is the idea of polyhedral labelling. As shown in figure 6 the
image appearance of a polyhedron is highly constrained by the limited configurations
of junction types and edge labels over all image viewpoints. These labels character-
ize all possible views of trihedral junctions. It is straightforward to enumerate the
possible labellings by considering the volume occupancy of the underlying surface
and for the discrete set of viewpoints which lead to a change in labelling.

Since these constraints were discovered by Huffman (1971) and Clowes (1971),
the concept has been extended to curved surfaces by Chakravarty (1981), Shapira &
Freeman (1978) and Malik (1987). An example of curved surface labelling is shown in
figure 7. A new label, →→ is required for curved surfaces to represent the occlusion
of the visible curved surface by itself. This occluding edge is called a limb. Polyhe-
dral incidence constraints can be used in the reconstruction of the 3D geometry of
an object from a single image. Sugihara (1986) showed that the requirement that
the 3D planar polyhedral faces must intersect to produce the observable edges and
vertices provides nearly enough constraints to reconstruct the solid geometry of the
polyhedron from a single image.

These constructions established an algebraic basis for both the labelling and re-
construction of polyhedra. These ideas were extended by Rothwell et al . (1993) to
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Figure 8. (a) Two rectangular prisms in a cluttered scene. (b) Edgel chains and junctions derived
from intensity contrast boundaries. (d) The topological constraints for the prism model. A
feasible view is defined by the recovered edges and vertices. Note that it is not necessary to
recover a complete structure. (c) The matched prism. The projected 3D geometry is defined by
the vanishing points of the parallel boundaries of the prism.

show that a viewpoint invariant description of a polyhedron can be derived in terms
of 3D projective coordinates, based on the observed 2D image features. This use of
polyhedral class constraints is demonstrated in the recognition of the two rectangular
prisms shown in figure 8.

(ii) Viewpoint consistency

Another widely exploited constraint is that all points on a rigid object project
with a single perspective transformation into the image. The principle of viewpoint
consistency holds that all points on an object will project to their corresponding
image positions for the same projection parameters.

This notion was initially used by Roberts (1965), who constructed a remarkably
comprehensive recognition system for composite polyhedra. A key step in his system
was the projection of the model into the image with a camera transform based on
an initial set of image-to-model correspondences. In his system, a model hypothesis
is considered valid if the projected model boundaries are in correspondence with
those extracted from the image. The basic elements of his approach, i.e. bottom-
up grouping followed by model verification based on viewpoint consistency, are still
the basic paradigm for geometry-based recognition systems after three decades of
ongoing research.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1220 J. L. Mundy
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Figure 9. (a) A 3D model is transformed to align a set of features with an image projection of an
object. When the camera is far enough from the object to eliminate strong perspective effects,
the alignment of three object points is sufficient to compute the pose of the object with respect
to the camera. (b) An example of the alignment of a model with a 2D image projection.

Viewpoint consistency was later exploited as a mechanism for perceptual organi-
zation where a small set of image features are grouped together corresponding to a
subset of the features of a single object. These feature sets are selected to be sufficient
to compute the camera transformation parameters. Therefore, for two such feature
groups to be consistent, the camera parameters which they define must be the same.
An early example of this approach is the work of Stockman (1987).

The view-consistency principle was also the basis of a series of recognition systems
based on a hypothesize–verify search of the space of possible camera viewpoints and
object models. In this approach, a small set of correspondences are used to project
the model into the image and then the projected model is used to verify the corre-
spondence set. If a restricted form of camera projection, called weak perspective, is
used, three point correspondences are sufficient to compute the camera transforma-
tion as shown in figure 9. These search methods are now widely known as alignment,
since the projection of the model is aligned with the image features (Huttenlocher
& Ullman 1987). The hypothesis and verification process can be based on more
extended sets of features which are grouped on generic relations which all objects
satisfy. For example, Lowe used approximate constraints, such as parallel lines in 3D
space are parallel in the image, to form larger object-feature group hypotheses before
verification.

The hypothesize–verify process can proceed incrementally as in the work of Grim-
son & Lozano-Pérez (1984), who treated the process as a branch-and-bound search
space, called the interpretation tree. Alternatively, the search can proceed in a a par-
allel fashion as in the vertex-pair algorithm of Thompson & Mundy (1987), where
the computed model projection parameters are clustered in a six-dimensional space.

(d) View-centred representation

Another approach to describing objects for recognition is called a view-centred
representation. In this approach the 3D object is represented by a number of 2D
geometric image projections of the object, or even by actual intensity images. Perhaps

Phil. Trans. R. Soc. Lond. A (1998)
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Figure 10. Two views, or aspects of a polyhedral solid are linked by common topological struc-
tures, i.e. faces 4 and 5. The projected topological structure is captured in the face-edge graph,
where faces are indicated by labelled circles, joined by edges according to common edges on the
3D solid. (After Underwood & Coates (1975).)

the earliest mention of this idea was by Underwood & Coates (1975). They proposed
that the description of an object can be learned by acquiring multiple, overlapping
views of the object. The idea is illustrated in figure 10. The nodes and edges of
the graph are faces and adjacency relations between the faces, respectively. As more
views are acquired, the graph is extended until a complete view structure is obtained.
The variation from one view to the next is defined by the topological structure of
the view. The projected features in a new view are matched to a subgraph of the
view structure to achieve recognition.

(iii) Visual events

The set of views of an object which are defined by changes in the topology of
the image projection of the object is called an aspect graph. The concept of aspects
was generalized to arbitrary 3D surfaces by Koenderink and van Doorn in 1979.
A set of critical events is defined that arise from a change in the structure of the
image projection of the surface. One of these critical events can be illustrated by the
torus as shown in figure 11. The computation of critical visual events entails difficult
problems in symbolic manipulation, for example, the outline curve of the torus for
view (b) in figure 11 is defined implicitly by
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(a) (b)

Figure 11. Critical viewing events occur when the viewpoint of the torus changes. When viewed
from directly above in (a), the torus is bounded by two circular limbs. With a shift in viewpoint
in (b), a cusp forms at each end of the hole and defines a new view structure of the torus.

where (r1 + r2) and (r1 − r2) are the outer and inner radii of the torus, respectively.
In spite of this complexity, the recognition of curved surfaces requires an analytical
representation for the appearance of objects like the torus. Ponce & Kriegman (1992)
used polynomial expressions like equation (3.1) to align object outlines in images to
recognize classes of algebraic surfaces.

Critical visual events can produce a very complex aspect graph, even for a relatively
simple object. Consider a surface with 3D texture, such as the dimples on a golf
ball. The number of critical views expands intractably with the number of surface
undulations. The problem of complex view structure was discussed by Binford (1981)
who pointed out that most critical views occur with very low probability over the
set of all viewpoints.

This observation defines a relatively small number of views which characterize
the major features of the object projection but not necessarily all minor topologi-
cal configurations. Therefore, one can assume that a view is generic and does not
involve critical alignment of boundary features. This assumption frees a recognition
algorithm from considering complex feature relationships during the perception of
object boundaries. Still, the problem of determining the scale below which critical
viewing events can be ignored is an unresolved problem.

(e) Appearance models

The approach of representing an object by a set of views has been used in rec-
ognizing a large library of isolated objects. A system, called SLAM, developed by
Murase & Nayar (1995), is capable of recognizing an object in an arbitrary intensity
view by comparing it against thousands of views stored in a library of 100 different
objects. Each object is represented by a large number of views taken with respect
to variations that are expected to occur during recognition, such as rotation about
the vertical axis of the object and illumination direction. This representation of the
object is called an appearance model.
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An object is classified by comparing the current image with the set of stored views
for each object. This comparison is carried out efficiently by interpolating between
compressed, stored views. The image compression is carried out using principal com-
ponents which capture the main variations between images. Principal components
are the eigenvectors of the covariance matrix of the image samples. In this way, the
space of 16 384 pixels for a 128 × 128 image is compressed to 15 or so principal
components. A dense set of images, collected according to a systematic exploration
of camera viewpoint and illumination direction, forms a manifold in this space for
each object. A new image is then classified by its distance to the nearest point of a
compressed manifold. This approach is similar to the classical nearest-neighbour clas-
sification algorithm widely used in pattern recognition (Duda & Hart 1973). Similar
techniques have also been applied in the recognition of objects using coherent optical
correlation and holographic pattern library storage (Casasent & Psaltis 1977).

If an unoccluded image view of an object is obtained, the process of finding the
nearest manifold is very efficient and recognition proceeds without image segmen-
tation. However, the appearance approach is sensitive to occlusion and it becomes
impractical to collect the combinatorially large space of images representing various
states of occlusion of one object by others. The appearance manifolds ultimately
must be based on local object features, which leads back to the segmentation and
structural representations discussed earlier.

This integration of model-based and appearance-based recognition approaches is
now being vigorously pursued (Schmid et al . 1996; Pope & Lowe 1996). The great
advantage of the appearance method is that it is not necessary to define a represen-
tation or model for a particular class of objects, since the class is implicitly defined
by the selection of the test objects. On the other hand, a model or recognition clas-
sification theory is required in order to achieve generalization to the recognition of
similar objects. It is not yet clear how to make use of empirically derived appearance
models to achieve generalization.

(f ) Class-based recognition

It is now widely accepted that interpretation of a complex scene cannot proceed in
a purely bottom-up manner. That is, successful feature grouping is guided by general
constraints associated with object classes. Thus the recognition process becomes an
interleaved top-down bottom-up process. An example of this approach is provided
by the MORSE recognition system developed at a number of research institutions
(Zisserman et al . 1995). The recognition system is aimed at a set of object classes that
induce strong grouping constraints in an image. Examples of these classes are surfaces
of revolution, polyhedra, canal surfaces, i.e. surfaces swept by a sphere with varying
radius along a space curve, and extruded surfaces where a planar cross-section is
extruded to form a three-dimensional surface. A scene containing a number of objects
representing these classes was shown in figure 8 for the discussion of recognition of
polyhedra. The processing of a surface of revolution (SOR) is shown in figure 12.
The SOR class is defined by an axis of rotational symmetry as displayed in the
figure. Feature grouping is based on the image constraints imposed by the symmetry.
This example represents the more general idea that a class can be identified from
the consistency of image constraints defined by the class, i.e. it is not necessary to
consider a specific SOR in carrying out the recognition.
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(a) (b) (c)

Figure 12. (a) A lamp base as an example of the class of objects represented by a surface of
revolution. (b) Edgel chains and junctions derived from the intensity image in (a). (c) The
computed rotational symmetry axis is shown as a white line. The symmetry axis was recovered
by grouping bi-tangents, which are shown in black.
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Leg Body Neck

Body–
Neck 
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Body–
Leg pair

triple
Leg–Neck
Body–

Leg–Leg
Body(a) (b)

Figure 13. (a) A feature grouping hierarchy for the class of horse-like shapes. (b) Two examples of
horse images with the extracted groupings. The assertion is that horse recognition is entailed by
successful feature group hypothesis. (From Forsyth with permission (personal communication).)

This class-based approach to recognition has also been used by Zarroug & Nevatia
(1996) to recover descriptions of more complex objects composed of generalized cylin-
ders. Their emphasis is on the decomposition of an object into parts. It is clear that
the recognition of a large database of objects cannot be efficiently achieved without
the ability to divide and conquer by representing an object in terms of components.
At the current state of development, however, there is no universally accepted formal
definition of what constitutes a part and no general approach for decomposing an
object into parts. A key unsolved requirement is that the part decomposition can be
robustly acquired from image constraints alone.

The idea of class-based recognition can be taken to a very general level. A very
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Figure 14. (a) The affine 1D mapping of three collinear points defines a 3D measurement space.
(b) The orbits of three 1D points under an affine projection form a pencil of planes parametrized
by the affine-invariant length ratio, β/α.

flexible form of class-based recognition processing is illustrated in figure 13. Here a
set of constraints between the legs and body of a horse are used to extract horses from
natural scenes. In this case the grouping of 2D symmetrical ribbons is achieved by
applying statistically derived constraints which hold between the parts in a canonical
frame. The relative geometric relationships in this canonical frame are approximately
invariant to viewpoint.

4. Geometric appearance

At this time, the field of object recognition is experiencing a peak of rapid devel-
opment, particularly in the exploitation of ideas from intensity appearance-based
methods. This enthusiasm has left geometric approaches somewhat in the back-
ground, since recent demonstrations of intensity-based recognition have been so ef-
fective. In keeping with the theme of this meeting, the underlying role of geometry
in the analysis of visual appearance is described, which complements the current
successes of appearance-based methods and reasserts the importance of geometry in
our understanding of object class.

(a) Group orbits

An important concept is the orbit of transformation actions. An orbit is a sur-
face defined in a space of geometric measurements which results from variation of
transform parameters. More formally,

the orbit of a feature vector, X, with respect to a group, G, of transfor-
mations is the set, {x | where x = TX for all T in G}.

Each orbit can be identified by a unique set of values which are the invariants to the
group actions.

Consider the affine mapping from one line onto another. The direct coordinates
of the three points define a three-dimensional observation space and the manifold is
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Figure 15. (a) A perspective camera constructed to converge to the limit as an affine camera.
The point, (0 0 1)T is fixed on the image line and the image line is always perpendicular to
the principal ray. As the viewpoint, (Vx Vy), recedes to infinity, the camera projection becomes
affine. (b) The manifold of projected point coordinates. The parametric contours of constant
viewpoint location, (Vx, Vy) are projected onto the manifold.

a planar surface. The orbits of this configuration are shown in figure 14. The orbit
planes are generated by the parameter, β/α, which is the affine-invariant length ratio,
(x3 − x1)/(x2 − x1). The planes intersect on the line corresponding to a = 0, which
is a set of singular 2× 2 matrices and not included in the affine group.

(b) The appearance of point-sets

The set of perspective projections does not form a group, since any such projection
is not invertable. However, it is still possible to consider the manifold of projected
geometric features, in analogy to the group manifolds just discussed. In order to
construct a manifold which can be visualized, a projection model is defined for the
case of 2D → 1D perspective projection, as shown in figure 15.

Let Vx and Vy be the coordinates, i.e. centre of projection, of the camera. Let

s =
1√

V 2
x + V 2

y

, t =
Vx
Vy
.

Then the 2D → 1D perspective projection, represented as a 3 × 2 matrix, parame-
terized by s and t:

C =
[−1/

√
1 + t2 t/

√
1 + t2 0

−ts/√1 + t2 −s/√1 + t2 1

]
.

In this representation of the camera, tan−1(1/t) is the slope of the vector from the
origin to the camera centre and 1/s is the distance of the camera centre to the origin.
As s approaches 0, the camera centre goes to infinity, and the perspective projection
approaches an affine projection.

The resulting appearance manifold for six points is shown in figure 15b. The man-
ifold is a quadric in three dimensions when expressed in terms of the projective
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coordinates of a 1D basis defined on three of the projected points. Four of the six
points in the plane form a 2D projective basis. It is thus possible to determine one of
the coordinates of the camera centre, since the 2D canonical basis does not depend
on the specific configuration of the original six points, assuming general positions.

In the case of affine projection, s = 0, the 2D canonical frame is composed of three
points and the 1D affine image basis is defined by two points (Mundy & Zisserman
1992). The single affine camera parameter, t, can be eliminated in terms of the affine-
invariant image coordinates of a 2D canonical frame, independent of the configuration
of the six object points.

These results hold more generally for 3D → 2D perspective and affine projection.
It can be shown that the perspective appearance manifold is still a quadric but
embedded in a higher-dimensional space. For example, for six points the perspective
appearance manifold is a quadric in four dimensions (Jacobs 1996). The 3D affine
basis is constructed from four points and the affine image basis requires three points.
The two invariant image coordinates of the fourth 3D basis point can be used to
eliminate the two unknown camera viewpoint parameters, as in the 1D example.

(c) Implications for recognition

The first important observation is that, for the affine case, it is possible to index
point-sets from a single view without knowledge of the 3D structure and without
initial information about the camera, as observed by Jacobs (1992). This affine ap-
pearance will depend on viewpoint, but since viewpoint is known, effective indexing
is possible. This result has been derived for point features. An obvious investiga-
tion to consider is the derivation of affine geometric appearance indices for other
types of features. Jacobs (1993) has already considered oriented points. However,
the approach suggested here provides a framework for considering features other
than points, i.e. curves and surfaces. This general line of investigation will yield a
sound geometric basis for indexing the manifolds of intensity-based features.

A second key observation is that geometric appearance is the substrate for intensity-
based appearance. The underlying geometry of a surface defines an irreducible min-
imum complexity of appearance which is further complicated by the variations due
to illumination and shadows. As shown earlier, it is possible to generate complete
perspective geometric point-set appearance manifolds from only one parameter. An-
other way of considering this result is that the entire appearance manifold can be
generated from just two views, which is just a reinterpretation of the well-known pro-
jective reconstruction theorem (Hartley 1994). Efforts to understand the structure
and intrinsic dimensionality of appearance manifolds can only benefit from a deeper
understanding of these geometric bounds on complexity.
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Discussion

O. Faugeras (INRIA, France). Dr Mundy showed us this interesting example of
the torus and the equation of the outline which was very complicated and then he
said that if you go to higher degrees of surfaces, it’s even worse, and we should drop
this approach and look more into combinations of geometry and intensity. If you look
at bidirectional reflectional distribution functions, they can be very, very complex as
well, so wouldn’t you bump into the same wall on that avenue, as you would on the
geometry tack?

J. L. Mundy. This is a good point and actually I was trying to correct this impres-
sion in the last part of the talk by saying that I think the way forward is to combine
the best theory we are able to do, which provides robust recoverable attributes, and
what we have to acquire from the image empirically. I think the combination of these
two models is really going to be the only possible way forward. There are certainly
many examples over history where achievement has been in advance of the theory.
Cathedrals stayed up, even though the knowledge of structural mechanics at that
time was relatively meagre. We cannot escape the fact that we are going to have
to allow some empiricism. On the other hand, I would hate to see the field domi-
nated entirely by empiricism. There is quite a strong push in that direction today
in the appearance-based vision realm where people have almost given up any theory
whatsoever. Instead the focus is on learning everything about the object by taking
thousands of pictures of it. I think that’s wrong too, and that this approach will
not really provide us with a great movement forward because we won’t understand
general object classes and we won’t improve our ability to extract and group image
features.

T. Kanade (Robotics Institute, Carnegie Mellon University, Pittsburgh, USA). Dr
Mundy said that in discussing formal versus empirical methods we need language for
describing objects. I’m not sure about that. I think we should not confuse recognition
of an object whose geometry is either known or at least can be varied by a certain
rule or relationship, such as the size versus length, and recognition of object class,
such as chair, desk and so on. For the latter type of recognition, I don’t think we have
much of a clue yet how to do it. Yet, if we suddenly begin to say, humans seem to
describe them by language, and therefore we need language as a tool, I think that’s
wrong. Now I do not have an answer to that either, but the answer seems to lie in
the perceptual grouping process. If there is any theory here, somehow we have to
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develop sound mathematical theory for perceptual grouping that relates observable
properties with the description of the object, not a linguistic theory that relates
symbolically represented properties with objects. Simply saying that geometry is
done and the language to describe functions is the next direction sounds like we are
going back to the old days before geometry pattern recognition, when all sorts of
soft AI-ish ideas were dominant.

J. L. Mundy. I partly agree with Professor Kanade. The point I was really trying to
make is that this area down here (on the figure indicating subconscious perception)
is terra incognita. In other words we do it, but we don’t know what we do, and we
have no model for what we’re doing. Maybe it could be exposed by some behaviourist
approach, you ask subjects questions, yes or no, that kind of idea, but we have no
way of capturing the process in any formal way. If we’re going to implement an
algorithm we have to have a formal description; this is my belief anyway, which
is a very mathematical point of view, if you will. But I believe that unless these
concepts, which we can’t even articulate, bubble up through human language and
finally become formalized as a mathematical structure, only then can we write an
algorithm to do grouping or an algorithm to classify. There’s no other alternative,
so we have to take that route. Indeed, over the last 2000 years this is what has been
happening, that vague ideas, maybe at first that we didn’t even have language for,
became ideas that we could talk about informally. Eventually, these ideas became
formalized to the point where we could write a computer algorithm. I don’t think
we can escape this long painful formalization process. The only way to escape it,
which then doesn’t leave us with particularly any understanding, is to rely totally
on empirical measurements. In other words, if you say, this object is class A, I show
it to a computer, I tell the computer it’s class A and I try to record everything
about it. I don’t know what to record, so I must record everything, and then use
that kind of behaviourist classification in order to empirically derive the class; but
the machine would have no formal model of that class at all other than the set of
attributes that were collected empirically. To me this is a last resort and does not
represent significant progress in our understanding of recognition.

C. d’Souza (Nottingham Trent University, UK ). In most of the literature I have
read on the viewpoint independence of the curvature, the data used are mostly range
data. Is work being done on the intensity data, since this would, in my view, represent
more problems in different views of lighting?

J. L. Mundy. Yes, to my knowledge, some of the best work in this line was by
Ponce, who used the Gaussian curvature as one attribute to restrict the choice of
objects in recognition using the alignment of these algebraic surfaces. The sign of the
curvature was an additional feature to the choice of possible object. With relatively
good resolution and relatively simple scenes, approaches such as the fitting of splines
to the surface outline in the image does allow decent enough measurement of the sign
of curvature to be an important clue. I don’t think anyone was proposing, including
Ponce, that it is practical to estimate Gaussian curvature to the tenth decimal place,
but Ponce was at least confident that it was positive rather than negative which was
the main thrust of that work.

M. Sabin (Numerical Geometry Ltd, Cambridge, UK ). This seems to be a bit of a
take stock meeting. I’m from outside the field, and it’s very interesting seeing the

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Object recognition 1231

kind of different ideas which are being put together within the meeting. From what
has been said about the last 30 years, it sounds as if it’s a good time to take stock—
many things have been tried and none of them has proved to be the breakthrough.
Now, there are a couple of other related fields which have also felt the need to take
stock around about this time. There’s the computational geometry field, which is
actually concerned with efficient algorithms for geometric computation, and they
went as far as, last year, having a task force to say, ‘what should we be doing now?’.
And the second is the surface design field, which calls itself computer aided surface
design, has more or less saturated the easy theory and there’s a lot of tidying at the
edges going on, and there are a few interesting looking avenues which are addressing
nonlinear things rather than the linear formulations we’ve had in the past. Is there
much contact with these other two groups?

J. L. Mundy. I would say, in the case of computational geometry, yes. I can mention
one person who has a foot in both camps, Dan Huttenlocher at Cornell University.
He has had a good influence by conveying many important ideas from computa-
tional geometry into this field. Keep in mind that we do not necessarily talk about
the implementation of our algorithms at the level where ideas from computational
geometry would be obvious. But, many computer vision algorithms and many of the
results that I’ve shown, embody many key ideas from computational geometry, such
as sorting, clever binning and line-sweeping methods.

I tried to give an honest portrayal of the progress, and actually it’s been very good.
If you look at Robert’s thesis from 1963, the scenes were relatively uncluttered, the
background was black, the objects were white. Today, there are many recognition
systems where you can throw an object down in a cluttered scene and have half of
the object occluded and still be able to perform successful recognition for certain
classes of objects. So, taken in the large I would say that is a tremendous advance.
Have we achieved the ability to recognize a general object in an arbitrary setting
under totally variable illumination? No. Will we do it in another 30 years? Probably
not. But I expect that it will continue to make steady progress.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

